Thin Solid Films High-quality Single-walled Carbon Nanotubes Synthesis by Hot Filament Cvd on Ru Nanoparticle Catalyst

نویسنده

  • Laurent Baraton
چکیده

We investigated the single-walled carbon nanotubes (SWCNTs) growth on Ru nanoparticle catalyst via hot filament assisted chemical vapor deposition (HFCVD) with two independent W filaments for the carbon precursor (methane) and the hydrogen dissociation respectively. The Ru nanoparticles were obtained following a two-step strategy. At first the growth substrate is functionalized by silanisation, then a self assembly of a ruthenium porphyrin complex monolayer on pyridine-functionalized metal oxide substrates. We have studied the impact of the filaments power and we optimized the SWCNTs growth temperature. The as grown SWCNTs were characterized by scanning electron microscopy (SEM), atomic force microscopy (AFM) and Raman spectroscopy. It was found that the quality, density and the diameter of SWCNTs depends on the filament and growth temperature. Results of this study can be used to improve the understanding of the growth of SWCNTs by HFCVD.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Localized synthesis of single-walled carbon nanotubes on silicon substrates by a laser heating catalytic CVD

Synthesis of high-purity single-walled carbon nanotubes (SWNTs) is demonstrated by a laser heating catalytic CVD method. This method makes it possible to produce SWNTs without the use of an electric furnace or hot filament. SWNTs were synthesized from alcohol using Fe/Co catalyst particles supported on zeolite and Mo/Co particles deposited directly on a substrate Synthesis of high purity SWNTs ...

متن کامل

Optimized Conditions for Catalytic Chemical Vapor Deposition of Vertically Aligned Carbon Nanotubes

Here, we have synthesized vertically aligned carbon nanotubes (VA-CNTs), using chemical vapor deposition (CVD) method. Cobalt and ethanol are used as the catalyst and the carbon source, respectively. The effects of ethanol flow rate, thickness of Co catalyst film, and growth time on the properties of the carbon nanotube growth are investigated. The results show that the flow rate of ethanol and...

متن کامل

A PARAMETRIC STUDY ON THE GROWTH OF SINGLE-WALLED CARBON NANOTUBES OVER CO-MO/MGO NANOCATALYST IN A FLUIDIZED BED REACTOR BY CCVD METHOD

Single-walled carbon nanotubes (SWNTs) with high yield and quality were synthesized using chemical vapor deposition (CVD) over Co-Mo/ MgO nanocatalyst in a fluidized bed reactor. Different parameters such as temperature, the ratio of hydrocarbon source to hydrogen, the flow rate of gas, growth time, the size of catalyst particles, heating rate, and the kind of hydrocarbon source were examined t...

متن کامل

A scalable CVD method for the synthesis of single-walled carbon nanotubes with high catalyst productivity

Ž . Single-walled carbon nanotubes SWNT are known to possess superior mechanical and electronic properties. However, the lack of methods for large-scale preparation limits fundamental research and application development of this unique Ž . material. Among all methods currently used for SWNT preparation, chemical vapor deposition CVD method represents the Ž best hope for large-scale production. ...

متن کامل

CVD synthesis and purification of single-walled carbon nanotubes on aerogel-supported catalyst

Single-walled carbon nanotubes (SWNTs) were synthesized by disproportionation of carbon monoxide on an aerogel-supported Fe/Mo catalyst. A simple acidic treatment followed by an oxidation process produced a high purity (> 99%) of SWNTs. The nanotubes obtained are bundled SWNTs and free of amorphous-carbon coating. Several factors that affect the yield and the quality of the SWNTs were also stud...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013